Agentic Artificial Intelligence FAQs

· 4 min read
Agentic Artificial Intelligence FAQs

What is agentic AI and how does this differ from the traditional AI used in cybersecurity? Agentic AI refers to autonomous, goal-oriented systems that can perceive their environment, make decisions, and take actions to achieve specific objectives. Unlike  https://www.linkedin.com/posts/qwiet_ai-autofix-activity-7196629403315974144-2GVw , which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.

What are some real-world examples of agentic AI being used in cybersecurity today? Agentic AI is used in cybersecurity.

Autonomous threat detection and response platforms that continuously monitor networks and endpoints for malicious activity
AI-powered vulnerability scanners that identify and prioritize security flaws in applications and infrastructure
Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats
Automated incident response tools can mitigate and contain cyber attacks without the need for human intervention
AI-driven solutions for fraud detection that detect and prevent fraudulent activity in real time
How can agentic AI help bridge the skills gap in cybersecurity and alleviate the burden on security teams? Agentic AI helps to address the cybersecurity skills gaps by automating repetitive and time-consuming security tasks currently handled manually.  https://www.youtube.com/watch?v=vZ5sLwtJmcU  from repetitive and time-consuming tasks like continuous monitoring, vulnerability scanning and incident response. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats.   ai-powered remediation  can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities. Autonomous agents ensure that security controls and vulnerabilities are addressed promptly, security incidents are documented, and reports are made. However, the use of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis.  To successfully integrate agentic AI into existing security tools and processes, organizations should:

Assess the current security infrastructure to identify areas that agentic AI could add value.
Create a roadmap and strategy for the adoption of agentic AI, in line with security objectives and goals.
Ensure that agentic AI systems are compatible with existing security tools and can seamlessly exchange data and insights
Provide training and support for security personnel to effectively use and collaborate with agentic AI systems
Establish governance frameworks and oversight mechanisms to ensure the responsible and ethical use of agentic AI in cybersecurity
What are some emerging trends in agentic AI and their future directions? Some emerging trends and directions for agentic artificial intelligence in cybersecurity include:

Collaboration and coordination among autonomous agents from different security domains, platforms and platforms
Development of more advanced and contextually aware AI models that can adapt to complex and dynamic security environments
Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security
Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data
Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making
Agentic AI provides a powerful defense for APTs and targeting attacks by constantly monitoring networks and systems to detect subtle signs of malicious behavior. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. Agentic AI, which adapts to new attack methods and learns from previous attacks, can help organizations detect APTs and respond more quickly, minimising the impact of a breach.

The benefits of using agentic AI for continuous security monitoring and real-time threat detection include:

Monitoring of endpoints, networks, and applications for security threats 24/7
Prioritization and rapid identification of threats according to their impact and severity
Security teams can reduce false alarms and fatigue by reducing the number of false positives.
Improved visibility of complex and distributed IT environments
Ability to detect new and evolving threats which could evade conventional security controls
Faster response times and minimized potential damage from security incidents
Agentic AI has the potential to enhance incident response processes and remediation by:

Automated detection and triaging of security incidents according to their severity and potential impact
Contextual insights and recommendations to effectively contain and mitigate incidents
Automating and orchestrating incident response workflows on multiple security tools


Generating detailed reports and documentation to support compliance and forensic purposes
Learning from incidents to continuously improve detection and response capabilities
Enabling faster, more consistent incident remediation and reducing the impact of security breaches
To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools
Foster a culture of collaboration and continuous learning, encouraging security personnel to work alongside AI systems and provide feedback for improvement
Create clear guidelines and protocols for human-AI interactions, including when AI recommendations should be trusted and when issues should be escalated to human review.
Invest in programs to help security professionals acquire the technical and analytic skills they need to interpret and act on AI-generated insights
Encourage cross-functional collaboration between security, data science, and IT teams to ensure a holistic approach to agentic AI adoption and use


How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To strike the right balance between leveraging agentic AI and maintaining human oversight in cybersecurity, organizations should:

Assign roles and responsibilities to humans and AI decision makers, and ensure that all critical security decisions undergo human review and approval.
Use AI techniques that are transparent and easy to explain so that security personnel can understand and believe the reasoning behind AI recommendations
Test and validate AI-generated insights to ensure their accuracy, reliability and safety
Maintain human-in the-loop methods for high-risk security scenarios such as incident response or threat hunting
Foster a culture of responsible AI use, emphasizing the importance of human judgment and accountability in cybersecurity decision-making
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals